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Abstract—In this paper, a class of second-order nonlinear time-
delayed multiagent systems with disturbance is investigated. In
order to improve the adaptivity, neural networks are used to learn
the unknown dynamics. Then, by utilizing Lyapunov-Krasovskii
functional, time delays can be eliminated. Moreover, a robusti-
fying term is introduced to constrain external disturbance. With
divide-and-conquer idea, the distributed controller is divided
into five different parts to make the multiagent systems reach
consensus. To circumvent singularity induced by the time-delay
elimination part, a σ-function is developed. Finally, the simulation
results demonstrate the validity of the distributed controller.

Index Terms—Distributed control; Disturbance; Neural net-
works; Second order; Time-delayed multiagent systems

I. INTRODUCTION

Distributed control is an important technique in multiagent
systems. It can be traced back to Boid model [1] and Vicsek
model [2], which are derived from natural phenomena. Variety
of problems investigated include optimal control problems
[3]–[5], output-based control problems [6]–[8], event-triggered
control problems [9], [10] and time-delayed control problems
[11], [12]. For more details, please refer to the survey papers
[13]–[17] and the references therein. In [18], a decentralized
adaptive control with neural networks (NNs) was established
for multiagent systems with unknown dynamics. In [12], a
class of first-order nonlinear time-delayed multiagent systems
with external noises is studied. In [11], a Lyapunov-Krasovskii
functional and Young’s inequality were used for the consen-
sus of time-delayed multiagent systems. Thus, it is of great
significance to investigate how to apply the distributed control
technique to second-order nonlinear time-delayed multiagent
systems.
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The technique of NNs is a powerful tool for learning the
unknown dynamics [19]. In [20], adaptive neural control was
introduced to solve the uncertain MIMO nonlinear systems.
In [21], an adaptive neural control protocol was utilized for a
class of strict-feedback nonlinear systems with unknown time
delays. We utilize the technique of Lyapunov-Krasovskii func-
tional from [21] and [11] to eliminate the negative effects of
time delays. However, this technique will induce singularities
in the distributed controller and a σ-function is established to
deal with it.

To the best of our knowledge, it is the first time to
investigate second-order time-delayed nonlinear multiagent
systems with the developed σ-function. A reference signal
which can reduce the difficulty of achieving consensus is
also applied. Furthermore, by using the property of hyperbolic
tangent function, a robustifying term is utilized to constrain the
disturbance.

The rest of this paper is organized as follows. Preliminaries
for graph theory and radial basis function neural networks
(RBFNNs) are given in Section II. Main results are given in
Section III. Simulation example is conducted to demonstrate
the effectiveness of the developed method in Section IV.
Conclusion is given in Section V.

Notations: (·)T denotes the transpose of a given matrix.
tr (·) is the trace of a given square matrix. ‖·‖ is the Frobenius
norm or Euclidian norm. ⊗ stands for the Kronecker product.
λmin(·) and λmax(·) are the smallest nonzero eigenvalue
and the largest eigenvalue of a given real symmetric matrix,
respectively. diag(·) represents a diagonal matrix.

II. PRELIMINARIES

A. Graph Theory

A triplet G = {V, E ,A} is called a graph if V =
{1, 2, . . . , N} is the set of nodes, E ⊆ V × V is the set of
edges, and A = (Aij) ∈ RN×N is the adjacency matrix of G.
Denote Aij as the element of the ith row and jth column of
the matrix A. The ith node represents the ith agent, and an
ordered pair (i, j) ∈ E means that agent i can directly transfer
its information to agent j. No self-loop will be considered.



Laplacian matrix L of graph G is given as follows:

Lij =

{ ∑
k∈Ni

Aik, if i = j;

−Aij , if i 6= j.
(1)

B. Radial Basis Function Neural Networks

In practice, we usually employ a neural network as the func-
tion approximator to model an unknown function. RBFNN is a
potential candidate for approximating the unknown dynamics
of the multiagent systems. A continuous unknown nonlinear
function vector h(x) = [h1(x), h2(x), . . . , hm(x)]T : Rm →
Rm can be approximated by RBFNNs:

h(x) = WTΦ(x), (2)

where x = [x1, x2, . . . , xm]T ∈ Rm is the input vector, W ∈
Rp×m is the weight matrix and p represents the number of
neurons. Φ(x) = [ϕ1(x), ϕ2(x), . . . , ϕp(x)]T is the activation
function vector and

ϕi(x) = exp

[
−(x− µi)T(x− µi)

δ2i

]
, i = 1, 2, . . . , p, (3)

where µi = [µi1, µi2, . . . , µim]T is the center of receptive field
and δi is the width of Gaussian function. For a given positive
constant θN , there exists an ideal weight matrix W ∗ such that

h(x) = W ∗TΦ(x) + θ, (4)

where θ ∈ Rm is the approximation error with ‖θ‖ < θN .
However, it is difficult to obtain W ∗ in physical implementa-
tions. Therefore, we denote Ŵ as the estimation of the ideal
weight matrix W ∗. The estimation of h(x) can be written as

ĥ(x) = ŴTΦ(x), (5)

where Ŵ can be updated online. The online updating algo-
rithm will be provided in Section III.

III. MAIN RESULTS

We discuss the second-order multi-agent system and it can
be described as follows:

ẍi(t) = fi(xi(t), ẋi(t)) + gi(ẋi(t− τi)) + ui(t) + ξi(t),

i = 1, 2, . . . , N, (6)

where xi(·) ∈ Rm is the state vector, τi and ξi(·) ∈ Rm
represent the unknown time delay and disturbance, respec-
tively. ui(·) ∈ Rm is the control vector, fi(·) : Rm → Rm
and gi(·) : Rm → Rm are continuous but unknown nonlinear
vector functions. Here we assume ‖ξi‖ < αi where αi > 0.
For simplicity, in the sequel we will ignore time expression t
in case there is no confusion.

Our aim is to design a distributed controller which can
make the nonlinear time-delayed multiagent systems reach
consensus. The distributed controller is divided into five parts
and they are linear feedback term, neural network term,

time-delay elimination term, robustifying term and second-
order information term. Before proceeding, we introduce a
Lyapunov-Krasovskii functional as follows:

LQ(t) =
1

2

N∑
i=1

t∫
t−τi

Qi(ẋi(ζ))dζ, (7)

where Qi(ẋi(ζ)) = φ2i (ẋi(ζ)) and φi(·) is a scalar function
satisfying φi(xi) ≥ ‖gi(xi)‖. The time derivative of LQ(t) is

L̇Q(t) =
1

2

N∑
i=1

(
φ2i (ẋi(t))− φ2i (ẋi(t− τi))

)
. (8)

Let zi1 = xi and zi2 = ẋi. Then, (6) can be rewritten in
the following form:{

żi1 = zi2, i = 1, 2, . . . , N,
żi2 = fi(zi1, zi2)+gi(zi2(t−τi))+ui +ξi.

(9)

In the sequel, for convenient analysis, we will ignore the
declaration that i = 1, 2, . . . , N and concentrate on agent i.
Suppose that

zi2d = −ki
∑
j∈Ni

Aij(zi1 − zj1), (10)

and we can obtain an error signal between the real state zi2
and the virtual state zi2d, i.e., vei = zi2 − zi2d. Consequently,
the time derivative of vei is

v̇ei = żi2 − żi2d
= fi(zi1, zi2) + gi(zi2(t− τi)) + ui

+ ξi + ki
∑
j∈Ni

Aij(zi2 − zj2). (11)

We utilize RBFNNs to approximate fi(zi1, zi2). The dis-
tributed controller is designed as follows:

ui =− ρi(t)vei − ŴT
i Φi(zi)−

1

2

vei
‖vei‖2 + σ(vei)

φ2i (zi2)

− γi tanh

(
κiγivei
εi

)
− ki

∑
j∈Ni

Aij(zi2 − zj2), (12)

where

ρi(t) = ki0 +
1

2
+

1

2ωi

(
1 +

1

‖vei‖2 + σ(vei)
~i
)
, (13)

~i =

t∫
t−τmax

Qi(zi2(ζ))dζ + ωi‖zi2‖2

+ (ωi + λmax(M))‖zei‖2,

zei =
∑
j∈Ni

Aij(zi1 − zj1),

zi = [zTi1, z
T
i2]T,

σ(vei) =

{
1, if ‖vei‖ = 0,
0, if ‖vei‖ 6= 0.

Furthermore, ωi > 0, τmax > τi > 0 and M is defined in (19).
Next, we discuss the structure of the distributed controller.



1) The linear feedback term −ρi(t)vei contains the informa-
tion used by agent i to guide its direction towards consensus
so that zi2 can track zi2d. If consensus can be reached, then
−ρi(t)vei has no impact on the multiagent system (6).

2) Neural network term −ŴT
i Φi(zi) is used to learn the

characteristics of fi(zi) online. Ŵi represents the estimation
of RBFNN weight matrix of agent i. The adaptive updating
algorithm is given as follows:

˙̂
Wi =



aiΦi(zi)v
T
ei, if tr

(
ŴT
i Ŵi

)
< Wmax

i , or

if tr
(
ŴT
i Ŵi

)
= Wmax

i and vTeiŴ
T
i Φi(zi) < 0;

aiΦi(zi)v
T
ei − ai

vTeiŴ
T
i Φi(zi)

tr
(
ŴT
i Ŵi

) Ŵi,

if tr
(
ŴT
i Ŵi

)
= Wmax

i and vTeiŴ
T
i Φi(zi) ≥ 0,

(14)
where ai > 0 and Wmax

i > 0. Suppose θi is the approximation
error of the weight matrix of agent i satisfying ‖θi‖ < θNi

. It
is noted that the initial value Ŵi(0) satisfies

tr
(
ŴT
i (0)Ŵi(0)

)
≤Wmax

i . (15)

Thus, we let Ŵi(0) be a zero matrix. Furthermore, according
to Lemma 2 in [18], if the updating algorithm is expressed as
(14), then tr

(
ŴT
i (t)Ŵi(t)

)
≤Wmax

i ,∀t ≥ 0.

3) −1

2

vei
‖vei‖2 + σ(vei)

φ2i (zi2) is the time-delay elimination

term which is introduced to eliminate the effects of time
delays. ‖vei‖ = 0 will induce an infinite control beyond
physical implementations. Thus, we should exclude zero case
and σ-function is a wise choice for solving this problem.

4) −γi tanh

(
κiγivei
εi

)
is to constrain disturbance ξi and

RBFNN approximation error θi, where κi = 0.2785 (more
details can be found in [19]). Furthermore, γi is the robust
gain satisfying

γi ≥ θNi
+ αi (16)

and εi > 0. By virtue of Lemma 1 in [19], we can easily get
the following inequalities:

γi‖vei‖+ vTeiγi tanh

(
κiγivei
εi

)
≤ εi. (17)

5) −ki
∑
j∈Ni

Aij(zi2 − zj2) is the second-order information

term and it includes the information of velocities that agent
i can obtain from its neighbors. If consensus is achieved,
velocities are zeros and this term becomes zero.

Theorem 1: The second-order multiagent system is given in
(6). If the distributed controller is given in (12) and the online
updating algorithm of the weight matrix is expressed as (14),
then the multiagent system (6) can achieve consensus.

Proof: We construct a Lyapunov function containing
error signal vei, i = 1, 2, . . . , N, as follows:

V (t) = Vẑ1(t)+LQ(t)+
1

2

N∑
i=1

tr

(
1

ai
W̃T
i W̃i

)
+

1

2
vTe ve (18)

where W̃i = W ∗i − Ŵi, Vẑ1(t) =
1

2
ẑT1 (L ⊗ Im)ẑ1, ẑ1 =

[zT11, z
T
21, . . . , z

T
N1]T, LQ(t)=

1

2

N∑
i=1

t∫
t−τi

Qi(zi2(ζ))dζ and ve =

[vTe1, v
T
e2, . . . , v

T
eN ]T. Note that if ‖vei‖ = 0, then zi2 = zi2d,

i.e., żi1 = zi2d = −ki
∑
j∈Ni

Aij(zi1−zj1). It it obvious that this

is a traditional distributed control for consensus. Therefore, in
the sequel we will focus on the case where ‖vei‖ 6= 0. Then,
we can infer that

dV (t)

dt
= zTe

˙̂z1 +
1

2

N∑
i=1

(
φ2i (zi2(t))− φ2i (zi2(t− τi))

)
−

N∑
i=1

tr

(
1

ai
W̃T
i

˙̂
Wi

)
+ vTe v̇e

= zTe ẑ2 +
1

2

N∑
i=1

(
φ2i (zi2(t))− φ2i (zi2(t− τi))

)
−

N∑
i=1

tr

(
1

ai
W̃T
i

˙̂
Wi

)
+

N∑
i=1

vTei(ui + ξi − żi2d)

+

N∑
i=1

vTei

(
fi(zi1, zi2) + gi(zi2(t− τi))

)
,

where ẑ2 = [zT12, z
T
22, . . . , z

T
N2]T and ze= [zTe1, z

T
e2, . . . , z

T
eN ]T.

The communication topology is connected, thus zero is an m-
multiplicity eigenvalue of L⊗Im and T contains eigenvectors
of L ⊗ Im corresponding to the eigenvalue matrix Λ =
diag(0Im, λ2Im, λ3Im, . . . , λnIm), where TTT = TTT =
ImN and T−1 = TT. Hence,

ẑT1 (L ⊗ Im)ẑ1 = ẑT1 T
TΛT ẑ1

= ẑT1 T
T
√

Λ
√

ΛT ẑ1

= ẑT1 T
T
√

Λ
√

Λ̄
√

Λ̄−1
√

Λ̄−1
√

Λ̄
√

ΛT ẑ1

= ẑT1 T
TΛTTTΛ̄−1TTTΛT ẑ1

= ẑT1 (L ⊗ Im)
T
M(L ⊗ Im)ẑ1

= ze
TMze, (19)

where

√
Λ = diag(0Im,

√
λ2Im,

√
λ3Im, . . . ,

√
λnIm),

Λ̄ = diag(λ2Im, λ2Im, λ3Im, . . . , λnIm),√
Λ̄ = diag(

√
λ2Im,

√
λ2Im,

√
λ3Im, . . . ,

√
λnIm),

and M = TTΛ̄−1T . Then, we substitute (12) and (17) into



dV/dt to obtain

dV (t)

dt
≤ 1

2

N∑
i=1

(‖zei‖2 + ‖zi2‖2)−
N∑
i=1

tr

(
1

ai
W̃T
i

˙̂
Wi

)

+
1

2

N∑
i=1

(
φ2i (zi2(t))−φ2i (zi2(t−τi))

)
+

N∑
i=1

εi

+

N∑
i=1

vTeiW̃
T
i Φi(zi)−

N∑
i=1

(
ρi(t)−

1

2

)
‖vei‖2

+
1

2

N∑
i=1

(
φ2i (zi2(t− τi))− φ2i (zi2(t))

)
.

With similar proof steps [12], we can obtain

tr

(
W̃T
i

(
1

ai

˙̂
Wi − Φi(zi)v

T
ei

))
≥ 0. (20)

With τi < τmax, we have

1

2

N∑
i=1

t∫
t−τi

Qi(zi2(ζ))dζ ≤ 1

2

N∑
i=1

t∫
t−τmax

Qi(zi2(ζ))dζ.

Thus, with (13) and (19) we obtain

dV (t)

dt
≤

N∑
i=1

(
−ki0‖vei‖2−

1

2ωi
‖vei‖2−

λmax(M)

2ωi
‖zei‖2

)

−
N∑
i=1

2Wmax
i

ωsai
+

N∑
i=1

2Wmax
i

ωsai
+

N∑
i=1

εi

− 1

2ωi

N∑
i=1

t∫
t−τmax

Qi(zi2(ζ))dζ

− tr

(
W̃T
i

(
1

ai

˙̂
Wi − Φi(zi)v

T
ei

))
≤− 1

ωs
Vẑ1(t)− 1

ωs
LQ(t)− 1

2ωs
vTe ve

− 1

2ωs

N∑
i=1

tr

(
1

ai
W̃T
i W̃i

)

+

N∑
i=1

2Wmax
i

ωsai
+ θs

≤− 1

ωs
V (t) +

N∑
i=1

2Wmax
i

ωsai
+ θs,

where ωs = max
i∈V

ωi and θs =
N∑
i=1

εi.

On the basis of Lemma 1 in [18], we obtain

V (t) ≤ V (0)e−
1
ωs
t + νs

(
1− e−

1
ωs
t
)
, (21)

where νs =
N∑
i=1

2Wmax
i

ai
+ωsθs. Since all the terms in (18) are

nonnegative, as t→∞ we can obtain that Vẑ1(t) ≤ νs. That

is,
∑

(j,i)∈E
Aij(zi1 − zj1)2 ≤ νs. By choosing the parameters

Wmax
i , ai, ωi, εi and Aij properly, we can eventually derive

that
‖zi1 − zj1‖ ≤

√
νs
Aij

, ∀(i, j) ∈ E , (22)

where
√
νs/Aij can be set small enough. Therefore, consen-

sus can be achieved.

IV. SIMULATION EXAMPLE

In this example, we utilize a multiple cooperative manip-
ulator system to verify the validity of the distributed con-
troller (12) in Section III. The two-link manipulator holds a
component which is used to assemble the industrial product.
The dynamics of the multi-manipulator system is described as
follows:

Mi(qi)q̈i + Vi(qi, q̇i)q̇i +Gi(qi) + gi(q̇i(t− τi)) + ξi(t) = Γi,
(23)

where qi = [qi1, qi2]T ∈ R2, q̇i and q̈i are the position, velocity
and acceleration vector of the ith manipulator, respectively.
Mi(qi) ∈ R2×2 is the inertia matrix of manipulator i;
Vi(qi, q̇i) ∈ R2×2 is the centripetal-Coriolis matrix of manipu-
lator i; Gi(qi) ∈ R2 is the gravitational vector of manipulator
i and Γi ∈ R2 is the torque vector of manipulator i. We give
the detail parameters of each manipulator as follows:

Vi(qi, q̇i) =

[
Vi11 Vi12
Vi21 Vi22

]
,

Gi(qi) =
[
Gi1 Gi2

]
,

Mi = I,

Vi11 =−mi2li1li2 sin(qi2)q̇i2,

Vi12 =−mi2li1li2 sin(qi2)q̇i2 −mi2li1li2 sin(qi2)q̇i1,

Vi21 = mi2li1li2 sin(qi2)q̇i1,

Vi22 = 0,

Gi1 = (mi1 +mi2)g̃li1 sin(qi1)+mi2g̃li2 sin(qi1 + qi2),

Gi2 = mi2g̃li2 sin(qi1 + qi2).

For simplicity, we set Mi = I . gi(q̇i(t − τi)) represents the
friction force vector where

gi(q̇i(t− τi)) =

[
si1q̇i1(t− τi) cos(q̇i2(t− τi))
si2q̇i2(t− τi) sin(q̇i1(t− τi))

]
. (24)

We set the same parameters of all the six manipulators. ki0 =
15, ωi = 30, Wmax

i = 100, ai = 100, γi = 2, κi = 0.2785
and εi = 0.01. The number of neurons for each RBFNN is 16
and δ2i = 1.6. µis are distributed uniformly among the range
[−3, 3] × [−3, 3]. The initial states of the multi-manipulator
system are

qT1 (0) q̇T1 (0)
qT2 (0) q̇T2 (0)
qT3 (0) q̇T3 (0)
qT4 (0) q̇T4 (0)
qT5 (0) q̇T5 (0)
qT6 (0) q̇T6 (0)

 =


[π/3, π/3] [−1, 1]
[π/3, π/4] [0.5, 1]

[π/5,−π/4] [2,−1]
[π/5, π/5] [2, 0.5]

[−π/4,−π/6] [3,−0.5]
[−π/6, π/3] [−1.5, 0.5]

 .



The Laplacian matrix is L given as follows:

L =


0.8 −0.5 0 0 0 −0.3
−0.5 0.7 −0.2 0 0 0

0 −0.2 0.9 −0.7 0 0
0 0 −0.7 1.8 −1.1 0
0 0 0 −1.1 3.1 −2
−0.3 0 0 0 −2 2.3

 .
Other parameters are given in Tables I–III.

TABLE I
COEFFICIENT VALUES OF THE iTH MANIPULATOR

i 1 2 3 4 5 6
si1 0.9 1.2 −1.1 −0.7 0.6 0.3
si2 1.2 0.8 0.6 0.3 0.8 0.4

TABLE II
TIME DELAY OF THE iTH MANIPULATOR

i 1 2 3 4 5 6 τmax

τi 0.1 0.05 0.15 0.08 0.18 0.1 0.2

TABLE III
PARAMETERS OF THE iTH MANIPULATOR

g̃ li1 li2 mi1 mi2

9.8 m/s2 1.5 m 1 m 2 kg 1 kg
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Fig. 1. Positions and velocities of link 1 of six manipulators. (a) Position
trajectories of link 1 of six manipulators. (b) Velocity trajectories of link 1 of
six manipulators.

From Fig. 1 and Fig. 2, we can infer that the multi-
manipulator system (23) can reach the same position and
velocity, where dqi1 and dqi2 represent the velocities of Link
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Fig. 2. Positions and velocities of link 2 of six manipulators. (a) Position
trajectories of link 2 of six manipulators. (b) Velocity trajectories of link 2 of
six manipulators.
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Fig. 3. Consensus error trajectories of six manipulators.

1 and Link 2, respectively. In order to describe whether
consensus has been achieved, we define the measurement of
consensus error for each manipulator

qei =

∥∥∥∥ ∑
j∈Ni

Aij(qi − qj)
∥∥∥∥, i = 1, 2, . . . , 6. (25)

In Fig. 3, all the consensus errors approach zero. This further
demonstrates the effectiveness of our design method.

V. CONCLUSION

A class of second-order nonlinear multiagent systems with
disturbance and time delay are studied. The technique of
Lyapunov-Krasovskii functional is utilized to eliminate time
delay. However, singularities will be induced by this technique.



Thus, a σ-function is established to solve this problem. To
deal with disturbance and the unknown nonlinear dynam-
ics, a robustifying term and neural networks are introduced,
respectively. Finally, the simulation example validates the
effectiveness of the developed distributed controller.
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