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Abstract—H -, control is a powerful method to attenuate dis-
turbance that presents in the control system. The design of such
controllers relies on solving the zero-sum game. In the practical
applications, however, the exact dynamics is mostly unknown
and the identification of the system causes approximation error
which is detrimental to the control performance. To overcome this
problem, an iterative adaptive dynamic programming algorithm
is presented in this paper to solve the continuous-time unknown
nonlinear zero-sum game with only online measurement. To
this end, a model-free approach to the Hamilton-Jacobi-Isaacs
equation is proposed based on policy iteration, and the value,
control and disturbance policies are approximated by neural
networks under the critic-actor-disturbance structure. Our al-
gorithm is proved to be a Gauss-Newton method solving an
optimization problem and uniformly converge to the optimal
solution. Simulation results verify the superior in eliminating
dynamics knowledge and saving learning time than other ones.

I. INTRODUCTION

PTIMAL control is a topic of intensive study in control
Otheory. It aims to find a policy that minimizes certain
performance index. In various control applications, there are
numerous situations where disturbance exists in the system
and plays a negative role on the control effect. In these cases,
H control [1], [2] provides a powerful method that attenuates
the disturbance effect. According to the game theory [3], the
H_, control is equivalent to the solvability of a two-player
zero-sum game (ZSG) where the controller is to minimize
the performance index in the worst-case disturbance. When
consider a system with the continuous-time (CT) nonlinear dy-
namics, the ZSG can be solved by the Hamilton-Jacobi-Isaacs
(HIT) equation. However due to the inherent nonlinearity, it is
intractable to give an analytic solution to the HJI equation.

Recently a new technique called adaptive/approximate dy-
namic programming (ADP) [4], [5] has been widely studied in
control area, also including ZSG problem. For example, Abu-
Khalaf et al. put forward an offline inner-outer-loop policy
iteration (PI) to solve the control-saturated HJI equation in
[6]. Zhang et al. [7] study the specific situation for which the
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saddle point may not exist. In [8], Dierks and Jagannathan
use a single online approximator to address the ZSG online.
Vamvoudakis and Lewis [9] also give an online ADP algorithm
which extends their synchronous policy iteration algorithm
(SPIA) [10] to the ZSG based on the critic-actor-disturbance
neural-networks (NNs) structure. Unfortunately, these two
works require the complete system dynamics. Motivated by
that, Wu and Luo [11] resort to the idea of integral reinforce-
ment learning (IRL), which relieves the dependence of the
internal dynamics.

ADP is developed from reinforcement learning (RL) [12]
which more concerns of discrete-time (DT) systems. In practi-
cal applications, the exact mathematical dynamics is frequently
unknown. Some researchers tune NNs to identify the unknown
dynamics; then apply ADP on the modeled systems to solve
the optimal control problems [13], [14]. Unfortunately, the
approximation errors in the identifier NNs are detrimental to
the optimality of the results. The training of the identifier NNs
also increases the computational cost and learning time. Hence
a totally model-free approach is more direct and efficient to
the unknown systems. In [15], Jiang and Jiang perform a
robust ADP to the nonlinear optimal control problem without
any system dynamics. As for linear quadratic ZSG where the
dynamics is linear and the performance index is quadratic,
the HJI equation reduces to the generalized algebraic Riccati
equation (GARE) and Vrabie and Lewis [16] use a model-
free method to obtain its solution. Another research that
studies the same problem is presented in [17]. But when
considering nonlinear systems, the unknown nonlinear ZSG is
rarely studied in the literature, except [18] where the authors
study the optimal tracking problem with H, control method.

In this paper, we consider the optimal control of a
continuous-time unknown nonlinear zero-sum game. An iter-
ative ADP algorithm is designed to approximately solve the
problem with online measurement. The original model-based
policy iteration to the HJI equation is converted to a model-
free iteration with the additional control inputs. To approach
the value, control and disturbance policies, neural network
approximators and the critic-actor-disturbance structure are
used. The HJI equation is approximately solved by iterating
the NNs parameters. It is further proved that the iteration is e-
quivalent to a Gauss-Newton method and uniformly converges
to the optimal value and saddle point. Simulated experiment
demonstrates the performance of our algorithm.



II. PRELIMINARY

Consider the following continuous-time nonlinear system

&= f(z) + g(x)u + k(r)w

z = h(z) W

where z(t) € R™ is the state vector, u(t) € R™ is the
control signal, w(t) € RY is the external disturbance satisfying
w(t) € L2[0,00), z € RP is the fictitious output, and f(x),
g(x), k(z) are the system dynamics vector and matrices with
appropriate dimensions. Assume f(x), g(z), and k(x) are
Lipschitz continuous and f(0) = 0.

H, control is to find a controller that renders the perfor-
mance index

J(x(0),u,w) = /000 (W (z)h(z) + u" Ru — y*w"w)dr

nonpositive for all w € L0, c0) with 2(0) = 0, where R > 0,
v > ~* > 0. If such controller exists, it is said that the system
has Ls-gain < ~y. 4* represents the smallest value for which
the problem is still solvable.

Given a control policy u(t) = u(x(t)) and a disturbance
policy w(t) = w(x(t)), their value function is defined as

V(z(0)) = /000 (h"h+u" Ru — v*ww) dr

E/ r(z(t), u,w)dr

0

A differential equivalent to the above is a Lyapunov equation
r(z,u,w) + VVI(f + gu+kw) =0,V(0) =0 (2)

where V denotes the partial derivative operator, i.e. VV =
0V /0x. Define the Hamiltonian function

H(z, VV,u,w) = r(z,u,w) + VVI(f 4+ gu + kw)

Based on game theory, H,, problem can be solved by
a two-player zero-sum game, where the control signal aims
to maximize the performance index while the disturbance
signal acts as an opponent and tries to minimize it. The
continuous-time nonlinear ZSG is to find the feedback control
and disturbance policies which gain the optimal value

V*(x) = minmax J(x, u,w)
u w
If the following Nash condition is satisfied
min max J(x, u,w) = max min J(z, u, w)
u w w u

ZSG has a unique solution, i.e. the saddle point (u*,w™*), and

u* is an H, controller for (1). According to the stationary
conditions, the formulations of u* and w* are derived as

OH (2, VV* u,w)
ou

OH (z, VV* u,w)
Ow

After substituting «* and w* into the Lyapunov equation (2),
we get the Hamilton-Jacobi-Isaacs equation

1
=0=u" = —iR_lgTVV*

1
=0=w' = oy A RVY

1
vV f+hTh— Zvv*Tg}rlgTvv*

+ iv—wv*%kTvv* =0,V*(0)=0 (3

Assumption 1: [9] Select v > 0. Assume system (1) is zero-
state observable, and there exists a control policy u(z) for
which the system has Lo-gain < -y on a set 2 € R™ and is
asymptotically stable. Assume the smooth solution of the HJI
equation (3) also exists on 2.

From the above statement, it is crucial to solve the HJI
equation in the ZSG. A common approach is based on policy
iteration. Given an appropriate initial value function Vj, a
sequence of the values {V;}$2, are produced by solving the
following Lyapunov equation with V;(0) =0

VVI(f + gui + kw;) + BT h 4+ u] Ru; — v*wlw; =0 4)

and using the policies updating law
1 1
uipn = =5 R7gTVV win = oy RV ()

It is easy to prove that following the iteration, the sequence
{Vi}2, converge to the optimal value V* as ¢ — oco. But
when reviewing (4) and (5), it is observed that the iteration
requires the complete knowledge of the dynamics, limiting its
application when such information is unknown.

ITI. A NEURAL-NETWORK BASED APPROACH TO HJI
EQUATION WITHOUT SYSTEM DYNAMICS

Suppose two arbitrary policies u and w are implemented and
we assume they stabilize the system (1) in a compact region.
Denote u; and w; as the results of the i-th iteration in (4) and
(5), which are further used to compute V;, u;y1, w;y1 at the
(i+1)-th iteration. Along the solutions of the system, the time
derivative of V; equals V; = VV/'(f 4+ gu + kw). Subtracting
0 from (4) and utilizing (5), we have

V, = —QU;TFHR(u —u;) + 272w;i1(w —w;) — r(z, ui,w;)

Based on the idea of integral reinforcement learning, the
following equation is formulated

0= Vi(a(t) = Vi(a(t) + [ 2uT1 Rlu—w)ir

t' t’
—/ 2’yzwiT+1(w —wi)dr—l—/ r(z,us, w;)dr.  (6)
t t

Next, neural network approximation is introduced to solve
(6) approximately. According to the Weirstrass high-order
approximation theorem, a smooth function can be uniformly
approximated on a compact set by neural networks. On the
compact set €2, we define!

Vi(z) = cl i 101(x) + e1,i41(x)
T

uir1(z) = 02,i+1¢2($) +€2,i41()
T

wit+1(z) = ¢3;4103(x) + €3,i41()

and
ui(z) = ¢ ;p2(x) + €24(x)

wi(z) = 5 1¢3(x) + e3,i(x)

ITo denote uniformly, the NN coefficients of V; use subscript (i + 1) and
the other value functions below follow the same rule.



where ¢ : R? — RE1 ¢y : R? — RE2, 3 : R? — RX3
are linearly independent basis function vectors, ¢ € RE1
C2,6 € REz2xm C3,0 € RE3Xq gre the coefficient vector
and matrices, €1,e, €26, €36 are the reconstruction errors
with appropriate dimensions. K, Ko, K3 are the numbers
of neurons in the hidden layers. Assume basis functions,
coefficients and reconstruction errors are all bounded over
Q and when K; — oo,Ky; — o0,K3 — 00, we have
€1,0 — 0,620 — 0,634 — 0.

After substituting the above NNs into (6), we yield

er =(d1(2(t') — d1(x(1))) erina

t/
+/ 205 cai11R(u — ¢3 ;¢o)dT
t
t/
—/ 29293 czq1(w — €3 1¢3)dT
t

t/
+/ r(x,c£i¢2,c3T7i¢3)dT
t

where ¢, is the Lyapunov equation error due to the NNs
reconstruction errors, defined by

e = —erip1(@(t') +eriva(2(t))

t/
—/ 2 ((u— C§¢¢2)TR52,1‘+1 — ¢35 coir1Rea;
¢

T
_62’i+1R52,i) dT
t/
2 T \T T
+/ 29% ((w— c5403) 3,41 — @3 €3, 413,
t
T
_53,i+1537i) dr

t/
- / (203 c,iRe,i + €3, Reo i)dr
t

tl
JF/ V? (205 c3,ie3, + €5 1€3,4)dT
t

Now three NNs structure is utilized, i.e. the critic, actor,
and disturbance NN approximators for the value, control and
disturbance policies respectively. As the ideal coefficients are
unknown, a group of estimations, Wi 41, Wa 41, W3 41,
replace ¢i1 41, C2,i+1,C3,i+1 and parameterize the NN approx-
imators as

‘71(55) = WlT,z'-s-l‘i’l(x)
Uiy1(z) = W2T¢+1¢2(33)

Wiy1(x) = W:;T,i+1¢3 (z)

Assuming the estimated weights Wy ;, W3 ;, w.rt. ca,¢3,,
are already known, then Wy ;4 1, W5 ;411, W3 ;41 can be de-
termined in the least-squares (LS) principle. Given a strictly
increasing time sequence {¢;}! _,, for each interval define the

residual error e; as
e =(p1(z(trs1)) — ¢1($(tk)))TW1,i+1

tht1
+ / 205 Wair1 R(u — W3 ;¢)dr

tr

b1 o g T
—/ 27" 3 Wi ip1(w — Wy ¢3)dr

tr
th+1
+ / (@, Wo 0, Wy yp3)dr (7)
23
By Kronecker product ®, we have
¢2TW2,i+1R(U - ng%) =
((u—Wi02)"R@ ¢35 )v(Wait1)
¢35 Wa i1 (w — W3i03) = (W — Wy 03) @63 ) v(Wa,is1)
where v(-) is a vector function which transforms a matrix into
a vector by stacking columns. After that (7) can be rewritten
into a linear form
er = 0 (Wi)Wig1 + E(W5)
v&_/here Wiit1, Wa 41, W3 ;41 are integrated into the vector
Wit = Wi, vWa,i)", viWsi00)"]" € RX and
K = Ky + mKs 4+ qKs3. W; is defined in the same way
by Wi, Wa i, W3, and 8y, &, are defined as
Or(@(try1)) — dr(x(te))
O(Wi) = | [i," 2R(u— Wy ;¢2) @ ¢odr
— [ 29 (w — WEi6s) @ ¢sdr

e RX

tr41

&) = [ r(o. W] 0, W0 < R
123

The estimated weights W, are determined by solving the

LS problem
-1

. 2
min €%
Wit1 kgo
Assumption 2 (Persistency of excitation (PE)): For each ¢ >
0, there exist [o > 0 and 6 > 0 such that for all [ > [y, we
have

-1

1 _ _

7 E O, (W3)0L (Wy) > 01
k=0

where I is the identity matrix with the given size.
Based on the PE condition, the solution to the LS problem
is directly calculated by

— — — —1 _ R

Wiy = (07 (W)e(W:)) T (W)=(W;)  ®)
where

O(W;) = [0o(Wy), ..., 01 (Wy)]" 9)
EWi) = [Go(Wi), .., & (Wy)]" (10)
Now the iterative ADP algorithm solving the unknown
nonlinear ZSG is proposed. Given a set of initial policies
weights, W o and W3, the parameters for the critic-actor-
disturbance NNs structure are iterated following (8). If a
sequence of the system trajectories are given and the PE

condition holds continually, no dynamics is needed in our
algorithm.



IV. CONVERGENCE THEORETICAL ANALYSIS
A. Convergence of the iteration

We first demonstrate the convergence of our algorithm by
proving its equivalence to a Gauss-Newton iteration. As we
assume there exists a solution of the HIJI equation, let the
optimal value and saddle point policies be represented by NNs
in the following form

V*(z) =] .1 () +e14() (11)
u*(z) = b ,¢2(x) + €24 () (12)
w*(z) = c} . d3(z) + £3.4(x) (13)

Now consider V*, u*, w* and use the IRL method. A similar
equation is derived as (6) after some manipulation

0=V"(z(t)) = V*(x(t) + /1t T R(2u — u*)dr

t’ t’
- / v T (2w — w*)dr + / hT hdr
t t

After substituting NNs approximation (11), (12), (13), it
becomes

=(1(@(t) = éi(x ()))Tcl,*
/ ¢2 co R Cg—:*(ﬁg)dT

—/ V23 3.4 (2w C§*¢3)d7+/ hY hdr
t t

where e 75 is the HJI equation error with

eggr = — e (x(t') + &1 (x(t))

t/
- / (2(u—c3 ,02)" Rea . — 4 Rea ) dr
t

EHJI =

t/
+ / /72 (2(w - C§*¢3)T€3,* - 5:5:*53,*)(17-
t

When the ideal values of ¢y «,c2.«, 3« are determined, the
approximated optimal value and saddle point to the HIJI
equation are acquired. As ¢y ,C2«,C3x are unknown, we
use Wy ., Wa ., W3, as their estimations. With {tk}gczo’ the
estimated weights formulate a set of residual errors

di =(¢1(2(trs1)) — o1 (x(t))) Wi
tht1
+ / ST W, R(2u — W, ) dr

ti

et op
_/ Y ¢3 WS,*(QW

ty

tk41
- W§*¢3)dr+/ h"hdr
tk
The problem becomes a nonlinear least-squares problem (NL-
SP) to find the parameters that minimize the square error
min DT (W,)D(W..)
W.
where W, denotes W, = [W{,  v(Wy.)", v(Ws.)"]" €
RX and D(W,) is the residual error vector D(W,) =
[do,-..,d;—1]T € RL It has been demonstrated that Gauss-
Newton method is a feasible approach to this optimization

(14)

problem. Next lemmas reveal the connection between Gauss-
Newton method and our iterative ADP algorithm.

Lemma 1: The Jacobian matrix J € R™*% of NLSP w.r.t.
(14) is defined as

D(D(V.):
O(W.);
When substituting W, into (9), we have J(W,) = O(W,).

Proof: The partial derivatives of dj, to the NN weights
are

(J(W.))ij =

ody,

o, = ¢1(x(trr1)) — d1(x(tr))
ad bt
awj :/ 2(pou R — ¢podl W, R)dr
¥ tk
ad thta
g = [ 20T — gk Wa)ir
% tr

From Kronecker product representation, it is straightforward
to infer ddy,/OW, = 0x(W.). Hence J(W,) = O(W,). =

Lemma 2: Given a parametric vector W; € RX, if As-
sumption 2 keeps satisfied, computing W; 1 based on (8) is

equivalent to the Gauss-Newton iteration

Wi = Wi — (IT(W)I(Wi) 3T (W) DOW;) - (15)

Proof: From Lemma 1 and based on the definitions of ©
and =, we have

Substitute into (8)
Wi = (JT(W)J(W))
- ("

According to the above analysis, it is revealed that our algo-
rithm is actually a Gauss-Newton method to the optimization
problem (14), and the next theorem is concluded whose proof
follows the convergence results given in [19].

Theorem 1: Suppose the following conditions remain satis-
fied

1) Assumption 2 holds continually;

2) there exists W, € R¥ such that JT(W,)D(W,) = 0;

3) the Jacobian matrix J(W ) at W, has full rank K;

4 p((ATW)IW.)) (S, Di(WVED(W2)) <
1, where p(A) indicates the spectral radius of a square
matrix A and V? is the Hessian matrix.

Under the above conditions, there exists € > 0 such that the
sequence {W} generated by the iterative ADP (8) converges
to W, for all Wy € D = {W|||W — W, || <} %

The first requirement in Theorem 2 demonstrates the PE
condition is necessary, which is commonly premised in adap-
tive control algorithms. A common approach to guarantee the
PE condition is adding probing noise to the control inputs, in
our case, i.e. u = v + e, and w = W’ + e,, where u' and
w’ are two policies for which (f + gu’ 4+ kw’) is stable and

2Throughout this paper, we use | - | as the magnitude of a scalar, || - || as
the vector norm of a vector, and || - ||2 as the induced matrix 2-norm.



e, and e, are the probing noise. The most common probing
noise is composed of several sinusoidal signals with different
frequencies.

B. Uniformly converge to the HJI solution

In this part, it is to be proved that the NN approximators,
Vi, U, w;, uniformly approximate V;, u;, w; defined by (4) and
(5). The convergence of the algorithm to the HJI solution is
concluded afterwards.

Lemma 3: Under Assumption 2, for each ¢ > 0,

oo | Vi(z) = Vi)

o Ui1(7) = uir1 ()
lim (211‘4_1(%) = wi+1(x)

K1,K>,K3—00

The proving process is similar to Theorem 3.1 in [15], so
we omit it here.

Theorem 2: Under Assumptions 1 and 2, for any arbitrary
e > 0, there exist i* > 0, K{ > 0, K5 > 0, K5 > 0, such
that

|‘7Z($) - V*(m)‘ <e
|tis1(z) — u*(2)]| <€
|‘o§i+1(x) - w*(x)” <e

hold for all z € Q, if i > i*, Ky > K}, Ky > K5, K3 > K.

Proof: The conclusion is proved from Theorem 1 and
Lemma 3. ]

V. SIMULATION STUDY

In the experiment we select a nonlinear system from [20]
where two online ADP algorithms, CRLA and SPIA, are
conducted to solve this nonlinear ZSG. The dynamics is

—x1 + o
—0.5 % (z1 + x2) + 0.5z9 sin(x1)?

Lo ]+ [ ]

One selects h(z) = [z1,72]T, R =1, v = 2. Note that there
exists no analytic solution to the problem. So a fourth order
complete polynomial basis function vector is selected for the
critic, actor, and disturbance NN, i.e.

¢1(x) = d2(z) = ¢3(z) = [1’1,zzaﬁaxl%z,iﬁ%vﬂfiﬁxza

xd, xS ol edwy, 2ad oy ad, 23]

The total number of parameters is K = 42. The system
starts from x(0) = [1,—1]7 and the integration is conducted
at every 0.1s. Initial weights W5 and W5 are set to O.
The measurement phase lasts for 20s. Afterwards the learning
phase starts training the NN weights. The algorithm needs
only 4 iterations to converge. Fig. 1, Fig. 2 and Fig. 3 show the
iteration of some parameters in the critic, actor and disturbance
NNs. The final actor NN is formulated as

a4 (x) = [0.0230,0.0109,0.1931, —0.8625, 0.0019, —0.0786,
— 0.0498, 0.0082, —0.0025, —0.0447,0.0831,
— 0.0118,0.0054, —0.0013] o ()

3 -
—— W
2.5t 21
W13
2t —_— Wl4 g
1.5 —Aa— Wy ||
W17
l I A
0.5¢
0 — = )
*’7\7_——7—‘7
-0.5 . - -
0 3 4
Fig. 1. Iteration of W7 in the learning phase of Example 2.
25 -
2t © W22 E
Wos
1.5} w1
—_— 24
1t —A— W25 1
0.5¢ W27 1
Q A%
e &
3 4

Fig. 2. Iteration of W5 in the learning phase of Example 2.
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Fig. 3. Iteration of W3 in the learning phase of Example 2.
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Fig. 4. Trajectories of x1 for iterative ADP algorithm (IADP), concurrent
reinforcement learning algorithm (CRLA), and synchronous policy iteration
algorithm (SPIA).
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t[s]

Fig. 5. Trajectories of xo for iterative ADP algorithm (IADP), concurrent
reinforcement learning algorithm (CRLA), and synchronous policy iteration
algorithm (SPIA).

In our algorithm, the time length of the online measurement
is 20s, compared to CRLA needs 270s and SPIA needs
more than 800s for their online learning [20]. Besides, the
implementation of CRLA and SPIA relies on parts of the
system dynamics, while no dynamics is needed here.

Next, our converged actor is compared with the results of
CRLA and SPIA, provided by [20], in a same finite-energy
run. The system is at rest and the disturbance is set to w(t) =
8 cos(t) exp~*. Fig. 4 and Fig. 5 illustrate the trajectories of
the state variables when executing three controllers separately.
From the plots, it is revealed that the difference of performance
between the three converged actors is barely noticeable except
that CRLA leads the best attenuating effect. Our algorithm
performs closely to CRLA and SPIA is the worst.

VI. CONCLUSION

The continuous-time unknown nonlinear zero-sum game is
approximately solved by a model-free iterative ADP algorith-
m using online measurement in this paper. With additional

control inputs, system trajectories contain the complete in-
formation of the dynamics, and is properly processed in the
algorithm to train the NN approximators of the value, control
and disturbance policies. The same online data can be used
repeatedly to conduct the iteration and produce the converged
solution, which contributes to shorten the learning time.
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