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Abstract—The topological information is essential for studying
the relationship between nodes in a network. Recently, Network
Representation Learning (NRL), which projects a network into a
low-dimensional space, has been shown their advantages in ana-
lyzing large-scale networks. However, most existing NRL methods
are designed to preserve the local topology of a network, but they
fail to capture the global topology. To tackle this issue, we propose
a new NRL famework, named HSRL, to help existing NRL
methods capture both the local and global topological information
of networks. Specifically, HSRL recursively compresses an input
network into a series of smaller networks using a community-
awareness compressing strategy. Then, an existing NRL method
is used to learn node embeddings for each compressed network.
Finally, the node embeddings of the input network are obtained
by concatenating the node embeddings from all compressed
networks. Empirical studies for link prediction on five real-world
datasets demonstrate the advantages of HSRL over state-of-the
art methods.

Index Terms—Networks analysis, network topology, represen-
tation learning

I. INTRODUCTION

The science of networks has been widely used to under-
stand the behaviour of complex systems. Those systems are
typically described as networks, such as social networks in
social media [1], bibliographic networks in academic field [2],
protein-protein interaction networks in biology [3]. Studying
the relationship between entities in a complex system is an
essential topic, which benefits a various of applications [4].
Just take a few example, predicting potential new friendship
between users in social networks [5], searching similar authors
in bibliographic networks [2], recommending new movies
to users in movie user-movie interest networks [6]. The
topologies of these networks provides insight information of
the behavior of nodes. We can find out strongly connected
neighborhoods of a node by exploring the local topology in a
network. Meanwhile, the global topology is another significant
aspect for studying the relationship between communities.
Such hierarchical topological information is helpful to learn
the relationship between nodes in a networks.

Many networks are large-scale in real-world scenarios, such
as a Facebook social network contains billion of users [7].
As a result, most traditional network analytic methods suffer
from high computation and space cost [4]. To tackle this

Fig. 1. An example of hierarchical view of network topology.

issue, Network Representation Learning (NRL) has been a
popular technique to analyze large-scale networks recently. In
particular, NRL aims to map a network into a low-dimensional
vector space, while preserving as much of original network
topological information as possible. Nodes in a network are
represented as low-dimensional vectors which are used as
input features for downstream network analysis algorithms.

Traditional NRL methods such as LLE [8] and ISOMap
[9] work well on small networks, while they are infeasible
to large-scale networks ref to the high computational cost.
Recently, some online learning methods, e.g., DeepWalk [10],
node2vec [11], and LINE [12], have been proposed to learn
large-scale network representation, which have been demon-
strated their efficiency and effectiveness for the large-scale
network analysis.

However, the above NRL methods only consider the local
topology of networks and fail to capture the global topological
information. DeepWalk and node2vec firstly employ short
random walks to explore the local neighborhoods of nodes,
and obtain node embeddings by the Skip-Gram model [13].
LINE preserves the first-order and second-order proximities,
so that it can only measure the relationship between nodes
at most two-hop away. These methods are efficient to capture
the relationship between close nodes, however, fail to consider
the case for nodes which are far away from each other.
Recently, HARP [14] has been proposed to overcome this
issue. It recursively compresses a network into a series of
small networks using two node collapsing schemes and learns
node embeddings for each compressed network based on an
existing NRL method. Unfortunately, the compressed networks



may not reveal the global topology of a input network since
HARP heuristically merges two closed nodes into a new node.
Furthermore, when learning node embeddings on the original
network, using node embeddings obtained on compressed net-
works as initialization solution may mislead the optimization
process to local minimum.

This paper presents a new NRL framework, called
Hierarchical Sampling Representation Learning (HSRL), to
learn node embeddings for a network with preserving both
their local and global topological information. Specifically,
HSRL uses a community-awareness network compressing
strategy, called hierarchical sampling, to recursively compress
a input network into a series of smaller networks, and then
engage an existing NRL method to learn node embeddings
for each compressed network. Finally, the node embeddings
of the original network can be abtained by concatenating all
node embeddings learned on compressed networks. Besides,
we mathmetically show that HSRL is able to capture the
local and global topological relationship between nodes. Novel
contributions of this paper include the following:

• We propose a new NRL framework, HSRL, to learn node
embeddings for a network, which is able to learn both
local and global topological information of a network via
a community-awareness network compressing strategy.

• We mathematically show that the node embeddings ob-
tained by HSRL explicitly embed the local and global
topological information of the input network.

• We demonstrate that HSRL statistically significantly out-
performs DeepWalk, node2vec, LINE, and HARP on link
prediction tasks on five real-world datasets.

II. RELATED WORK

Most early methods in NRL field represent an input network
in the form of a matrix, e.g., adjacency matrices [8], [15],
Laplacian matrices [16], node transition probability matrices
[17], and then factorize that matrix to obtain node embeddings.
They are effective for small network, but can not scale to large-
scale networks due to high computation cost.

To analyze large-scale networks, DeepWalk [10] employs
truncated random walks to obtain node sequences, and then
learn node embeddings by feeding node sequences into Skip-
Gram model [15]. To generalize DeepWalk, node2vec [11]
provides a trade-off between breadth-first search (BFS) and
deepth-first search (DFS) when generating truncated random
walks for a network. LINE [12] intends to preserve first-
order and second-order proximities of nodes by minimizing
the Kullback-Leibler divergence of two joint probability dis-
tributions for each pair nodes. These methods are scalable to
large-scale networks, but fail to capture the global topological
information of networks. Because random walks are only
effective to explore local neighborhoods for a node, and both
first-order and second-order proximities defined by LINE just
measure the relationship between between nodes at most two-
hop away.

To investigate global topologies of a network, HARP [14]
recursively uses two collapsing schemes, edge collapsing and

star collapsing, to compress a input network into a series of
small networks. Starting from the smallest compressed net-
work, it then recursively conducts a NRL method to learn node
embeddings based on the node embeddings obtained from its
previous level (if any) as the initlization. However, HARP has
two weaknesses: 1) nodes that are connected but belongs to
different communities may be merged, which leads to that the
compressed networks cannot well reveal the global topology
of an input network. Furthermore, taking the node embeddings
learned on such compressed networks as initialization would
mislead NRL methods to a bad local minima. HARP may work
well on node classification tasks since close nodes tend to have
the same labels, but may ineffective for the link prediction
tasks. Because predicting link between two nodes needs to
consider both the local and global topological information of
a network, such as neighborhoods they are sharing with and
communities they are both involved in. This paper proposes
HSRL to tackle the above issues of existing NRL methods.

III. PRELIMINARY AND PROBLEM DEFINITION

This section gives the notations and definitions throughout
this paper.

We firstly introduce the definition of a network and related
notations.

Definition 1. (Network) [4] A network (a.k.a. graph) is
defined as G = (V,E), where V is a set of nodes and E is
a set of edges between nodes. The edge e ∈ E between nodes
u and v is represented as e = (u, v) with a weight wu,v ≥ 0.
Particularly, we have (u, v) = (v, u) and wu,v = wv,u if G is
undirected; (u, v) 6= (v, u) and wu,v 6= wv,u, otherwise.

In most networks, some nodes are densely connected to
form a community/cluster, while nodes in different com-
munities are sparsely connected. Detecting communities in
a network is beneficial to analyze the relationship between
nodes. We employ modularity as defined below to evaluate
the quality of community detection.

Definition 2. (Modularity) [18], [19] Modularity is a measure
of structure of networks, which measures the density of edges
between the nodes within communities as compared to the
edges between nodes in different communities. It is defined as
below.

Q =
1

2m

∑
i,j

(
wi,j −

kikj
2m

)
δ(ci, cj) (1)

where wi,j is the weight of edge ei,j between nodes vi and
vj , ki =

∑
i wi,j , m = 1

2

∑
i,j wi,j , ci is the community

which node vi belongs to, and

δ(u, v) =

{
1, if u = v,
0, otherwise.

Networks with high modularity have dense connections
between nodes within communities but sparse connections
between nodes in different communities.



We give the definition of hierarchical sampling which is
used to recursively compress a network into a series of smaller
networks as follows.

Definition 3. (Hierarchical Sampling) Given a network
G = (V,E), hierarchical sampling compresses the original
network level by level and obtains a series of compressed
networks G0, G1, ..., GK , which reveals the global topological
information of original network at different levels, respectively.

These compressed networks reveal the hierarchical topolo-
gies of the input network. Therefore, the node embeddings
obtained in compressed networks embed the hierarchical topo-
logical information of the original network.

To learn node embeddings of a network, NRL maps the
original network into a low-dimensional space and represents
each node as a low-dimensional vector as formulated below.

Definition 4. (Network Representation Learning) [4] Given
a network G = (V,E), network representation learning aims
to learn a mapping function f : v → z ∈ Rd where d� |V |,
and preserving as much of the original topological information
in the embedding space Rd.

Finally, we present the formulation of the hierarchical
network representation learning problem as following:

Definition 5. (Hierarchical Network Representation Learn-
ing) Given a series of compressed networks G0, G1, ..., GK

of original network G = (V,E) and a network representation
learning mapping function f , hierarchical network representa-
tion learning learns the node embeddings for each compressed
network by Zk ← f(Gk), 0 ≤ k ≤ K, and finally obtains the
node embeddings Z of original network G by concatenating
Z0, Z1, ..., ZK .

IV. HSRL

In this section, we present Hierarchical Sampling Repre-
sentation Learning framework which consists of two parts:
1) Hierarchical Sampling that aims to discover the hierarchi-
cal topological information of a network via a community-
awareness compressing strategy; and 2) Representation Learn-
ing that aims to learn low-dimensional node embeddings while
preserving the hierarchical topological information.

A. Hierarchical Sampling

Here we present the hierarchical sampling which is intended
to compress a network into a series of compressed networks
according to different compressing levels. Each compressed
network reveals one of hierarchical levels of global topology
of the original network.

A community is one of the significant patterns of networks.
Nodes in the same community are densely connected and
nodes in different communities are sparsely connected. The
relationship between nodes inside a community presents the
local topological information of a network, while the rela-
tionship between communities reveals its global topology. It
is worthy to notice that in most large-scale networks, there
are several natural organization levels - communities divide
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Fig. 2. An exampling of compressing a network

themselves into sub-communities - and thus communities with
different hierarchical levels reveal the hierarchical topological
information of original networks [20], [21]. Consequently, we
compress a network into a new network based on communities
by taking each community as a new node in the compressed
network. Based on different hierarchical levels of communi-
ties, we can obtain a series of compressed networks which
reveal the hierarchical global topological information of the
input network.

The quality of the partitions obtained by community dectec-
tion algorithms can be measured by the modularity of the parti-
tion [21], [22]. As a result, we can detect communities through
optimizing the modularity of a network. As shown in Fig.2,
inspired by the Louvain method [21], hierarchical sampling
compresses a network into a new network by implementing
two phases, modularity optimization and node aggregation.

Modularity optimization. The first phase initializes each
node in a network as a community, and merges two connected
nodes into one community if it can improve the modularity of
the network. The implementation of community amalgamation
will be repeated until a local maxima of the modularity is
attained.

Node aggregation. The second phase builds a new network
whose nodes are the communities found in the previous phase.
The weights of edges between new nodes are the sum of the
weights of edges between nodes in the corresponding two
communities.

As shown in Algorithm 1, by iteratively repeating the above
two phases, hierarchical sampling obtains a series of com-
pressed networks which reveal hierarchical global topology of
the original network.

B. Representation Learning

This section introduces representation learning on com-
pressed networks obtained by previous section, and concate-
nating the learned embeddings into node embeddings of the
original network. We further provide a mathematical proof
to demonstrate that HSRL embeds both local and global
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Fig. 3. The framework of HSRL.

Algorithm 1 Hierarchical Sampling
Input: network G = (V,E), the largest # compressed levels

K
Output: a series of compressed networks G0, G1, ..., GK

1: G0 ← G
2: for k ≤ K do
3: Ck ←ModularityOptimization(Gk)
4: Gk+1 ← NodeAggregation(Ck)
5: k ← k + 1
6: end for
7: return G0, G1, ..., GK

topological relationship of nodes in the original network into
the learned embeddings.

As shown in Fig.3, we conduct representation learning on
each compressed network. It is worth noticing that any NRL
method can be used for this purpose. The embeddings of
nodes in each compressed network are used to generate the
final node embeddings of the original network. Particularly,
the embedding Zi of node vi in the original network G is the
concatenation of the embeddings of hierarchical communities
it involved in, as shown below.

Zi = [Z0
c0i
, Z1

c1i
, ..., ZK

cKi
], (2)

where cki is the k-th hierarchical community vi belongs to.
The node embeddings learned by the above representation

learning process hold the following two Lemmas.

Lemma 1. Nodes within the same hierarchical communities
will get similar embeddings. The more the same hierarchical

communities in which nodes involved, more similar embed-
dings they have.

From Eq.2, it is easy to find that the above lemma holds.
Lemma 1 shows that HSRL preserves the relationship between
densely connected nodes in the original network. Therefore,
HSRL is capable to preserve the local topological information
of a network.

Lemma 2. The cosine similarity between embedding Zi and
embedding Zj is proportional to the sum of similarities of the
embeddings between their hierarchical communities.

sim(Zi, Zj) ∝
K∑

k=0

sim(Zk
Ck

i
, Zk

Ck
j
). (3)

Proof.

sim(Zi, Zj) =
Zi · Zj∣∣Zi

∣∣∣∣Zj

∣∣
∝ [Z0

C0
i
, Z1

C1
i
, ..., ZK

CK
i
] · [Z0

C0
j
, Z1

C1
j
, ..., ZK

CK
j
]

=

K∑
k=0

Zk
Ck

i
· Zk

Ck
j

∝
K∑

k=0

sim(Zk
Ck

i
, Zk

Ck
j
).

From Lemma 2, we know that two nodes will obtain
similar embeddings if they are involved in similar hierarchical
communities no matter the distance between them in the
original network. The relationship between communities in
different hierarchies is embedded in the embeddings of their



involved nodes. Hence, HSRL can preserve the hierarchical
global topological information of a network.

Finally, HSRL is presented in Algorithm 2.

Algorithm 2 HSRL
Input: network G = (V,E), compressing levels K, NRL

mapping function f
Output: node embeddings Z

1: G0, G1, ..., GK ← HierarchicalSampling(G,K)
2: for k ≤ K do
3: Zk ← f(Gk)
4: k ← k + 1
5: end for
6: Z ← Concatenating(Z0, Z1, ..., ZK)
7: return Z

V. EXPERIMENTS

In this section, five real-world datasets are used to
evaluate the representation learning performance of HSRL
on link prediction task. The source code is available at
https://github.com/fuguoji/HSRL.

A. Datasets

We evaluate our method on various real-world datasets,
including Movielens1, MIT [23], DBLP [2], Douban [24], and
Yelp2. These datasets are commonly used in NRL field. The
detailed statistics of datasets are shown in Table I and the brief
descriptions of each dataset are presented as below.

• Movielens: Movielens is a user-movie interest network
which contains three types of nodes: users, movies, and
terms.

• DBLP: DBLP is a bibliographic network in computer
science collected from four research areas: database,
data mining, machine learning, and information retrieval.
Nodes in the network including authors, papers, venues,
and terms.

• MIT: MIT is a Facebook friendship network at one
hundred American colleges and universities at a single
point in time. It contains a single type of nodes, users.

• Douban: Douban is a user-movie interest network col-
lected from a user review website Douban in China. The
network contains four types of nodes including users,
movies, actors, and directors.

• Yelp: Yelp is a user-business network collected from
a website Yelp in America. It contains four types of
nodes including users, businesses, locations, and business
categories.

B. Baselines

We compare our method with four start-of-the-art algo-
rithms, which are introduced as below.

• DeepWalk: DeepWalk is a random walk based NRL
method. It conducts random walks on each node to

1https://movielens.org/
2https://www.yelp.com

TABLE I
STATISTICS OF FIVE DATASETS.

Datasets # Nodes # Edges Network Types

Movielens 1332 2592 User-movie
DBLP 37791 170794 Bibliography
MIT 6402 251230 Friendship

Douban 13786 214392 User-movie
Yelp 28759 247698 User-business

sample node sequences from a network, and uses the
Skip-Gram model to learn node embeddings by treating
node sequences as sentences and nodes as words.

• node2vec: node2vec is a biased random walk based
method that provides a trade-off between DFS and BFS
when employing random walks on nodes. Then the Skip-
Gram model is used to learn node embeddings based on
the sampling node sequences.

• LINE: LINE defines the first-order and second-order
proximities to measure the similarity between nodes, and
learns node embeddings by preserving the aforemen-
tioned proximities of nodes in the embedding space.

• HARP: HARP recursively uses two collapsing schemes,
edge collapsing and star collapsing, to compress a input
network into a series of small networks. Starting from the
smallest compressed network, it recursively conducts a
NRL method to learns node embeddings in each network
using node embeddings of the previous level network as
initilization.

C. Parameter Settings

Here we discuss the parameter setting for our method and
baselines:

• DeepWalk, HARP(DW), and HSRL(DW). The number
of random walks t, the length of each walk l, window size
of Skip-Gram model w, representation size d, and learn-
ing rate η for DeepWalk, HARP(DW), and HSRL(DW)
are set as t = 10, l = 40, w = 5, d = 64, η = 0.025. The
largest number of compressing levels for HSRL(DW) K
is set as 3.

• node2vec, HARP(N2V), and HSRL(N2V). The parame-
ter setting for node2vec, HARP(N2V), and HSRL(N2V)
is t = 10, l = 40, w = 5, d = 64, η = 0.025. The largest
number of compressing levels for HSRL(N2V) K is set
as 3.

• LINE, HARP(LINE), and HSRL(LINE). The number
of negative sampling λ, the learning rate η, and represen-
tation size d for LINE, HARP(LINE), and HSRL(LINE)
are set as λ = 5, η = 0.025, d = 64. The largest number
of compressing levels for HSRL(LINE) K is set as 3.

D. Hierarchical Sampling for Networks

We firstly discuss the results of hierachical sampling on
testing networks. Fig.4 presents the network compressing re-
sults by the hierarchical sampling on five datasets. As shown in
Fig.4, the number of nodes and edges of compressed networks
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Fig. 5. Examples of hierarchical sampling.

drastically decrease as the compressing process continues and
finally becomes stable when the compressing level is large
than 3. Therefore, in the following link prediction tasks, we
set the largest number of compressing level as 3.

As shown in Fig.5, we present three networks, Fig.5(a),
Fig.5(e), and Fig.5(i), as the intuitive examples to illustrate
how hierarchical sampling works.

The network in Fig.5(a) contains two dense communities
which are merged into a new node in the following compressed
networks respectively. Therefore in the compressed networks,
the local topological information of original networks are

preserved by considering densely connected nodes in the same
community as a whole. Meanwhile, the compressed networks,
Fig.5(b), Fig.5(c), and Fig.5(d), reveal the hierarchical topo-
logical information of the input network. For a balanced
tree network and a grid network as shown in Fig.5(e) and
Fig.5(i), their hierarchical topologies can be revealed by their
compressed networks as well. The results of Fig.5 show that
the network compressing strategy of HSRL works well on
different types of networks.

E. Link Prediction

We conduct link prediction tasks to evaluate the perfor-
mance of our method on five real-world datasets. Specifically,
we prediction the link between nodes based on the cosine
similarity of their embeddings. The evaluation metric used in
this task is AUC. Higher AUC indicates the better performance
of NRL methods.

We randomly split the edges of a network into 80% edges as
training set and the left 20% as testing set. Each experiment
is independently implemented for 20 times and the average
performances on testing set are reported in Table II.

We summarize the observations from Table.II as following:
• HSRL significantly outperforms all baselines on all

datasets. For the small and sparse network movielens,
the imporvements of HSRL(DW), HSRL(N2V), and
HSRL(LINE) are 3.6%, 2.5%, and 16.6% respectively.
For the dense network MIT, HSRL(DW), HSRL(N2V),
and HSRL(LINE) outperform the baselines by 2.9%,
8.5%, and 0.5%. For three large networks, DBLP, Yelp,
and Douban, the improvement of HSRL is striking:
the improvements of HSRL(DW), HSRL(N2V), and



TABLE II
AUC OF LINK PREDICTION.

Algorithm Dataset
Movielens DBLP MIT Yelp Douban

DeepWalk 0.847 0.794 0.899 0.842 0.687
HARP(DW) 0.817 0.659 0.902 0.743 0.559
HSRL(DW) 0.879† 0.847† 0.926† 0.901† 0.842†

Gain of HSRL(%) 3.6 6.3 2.9 6.5 18.4

node2vec 0.843 0.673 0.843 0.742 0.569
HARP(N2V) 0.828 0.647 0.879 0.708 0.552
HSRL(N2V) 0.865† 0.840† 0.921† 0.892† 0.819†

Gain of HSRL(%) 2.5 19.9 8.5 16.8 30.5

LINE 0.613 0.641 0.814 0.752 0.624
HARP(LINE) 0.220 0.387 0.702 0.306 0.399
HSRL(LINE) 0.735† 0.664† 0.819 0.799† 0.756†

Gain of HSRL(%) 16.6 3.5 0.5 5.9 17.5

† denotes the performance of HSRL is significantly better than the
other peers according to the Wilcoxon’s rank sum test at a 0.05
significance level.

HSRL(LINE) are 6.3%, 19.9%, 3.5% for DBLP, 6.5%,
16.8%, 5.9% for Yelp, and 18.4%, 30.5%, 17.5% for
Douban.

• The results of HARP on movielens, DBLP, Yelp, and
Douban are worse than the original NRL methods. More-
over, the performance of HARP(LINE) is drastically
worse than LINE. It only works better than DeepWalk,
node2vec on MIT which is a small and dense network.
The compressed networks generated by HARP on a
network could not reveal its global topologies. Hence,
using node embeddings of compressed networks as ini-
tialization could mislead the NRL methods to a bad local
minima. Such a issue could occur especially when the
input network is large-scale and the objective function of
the NRL method is highly non-convex, e.g., LINE.

• The improvements of HSRL on DBLP, Yelp, and Duban
are larger than that on Movielens and MIT. It demon-
strates that HSRL works much better than baselines on
large-scale networks.

F. Parameter Sensitivity Analysis

We conduct link prediction task on DBLP to study the
paramenter sensitivity of HSRL. Without loss of generality, we
used DeepWalk to learn node embeddings for each compressed
network. Fig.6 shows using 80% edges as training set and the
left as testing set, the link prediction performance (AUC) as a
function of one of chosen parameters when fixing the others.

When fixing the largest number of compressed level to 3,
Fig.6(a) shows the AUC of link prediction drastically improves
as the number of embedding dimension d increases, and finally
becomes stable when d is larger than 32. When d is small, it is
inadequate to embody rich information of networks. However,
when d is large enough to embody all original network
information, increasing d will not improve the performance
of link prediction.

Fig.6(b) shows that the impact of the largest number of
network compressing level K on the performance of link

(a) representation size d (b) network compressing level K

Fig. 6. Parameter sensitivity on link prediction.

Fig. 7. Running time

prediction by fixing the representation size d to 64. As the
we increase the number of network compressing level K at
the beginning, the AUC of link prediction drastically improves.
It demonstrates that the hierarchical topologies help to capture
the potential relationship between nodes in a network. When
K is larger than 3, the performance of link prediction becomes
stable. It is reasonable since the DBLP network could not be
compressed further after level 3 as shown in Fig.4(b).

G. Running Time

Fig.6 shows the actual running time of all NRL methods
on five testing networks. All experiments are conducted on
a single machine with 32GB memory, 16 CPU cores at 3.2
GHZ. The results show that the actual running time of HSRL
is at most three times higher than others. The running time of
HSRL is linear to the corresponding baselines as the scale of
input networks growing. Moreover, the running time of HSRL
can be reduced by parallelizing the training processes on all
compressed networks.

VI. CONCLUSIONS

Most conventional NRL methods aim to preserve the local
topological information of a network but overlook their global
topology. Recently, HARP was proposed to preserve both local
and global topological information. However, it could easily
get stuck at a bad local minimum due to poor network com-
pressing schemes. In this paper, we propose a new NRL frame-
work, HSRL, to tackle these issues. Specifically, HSRL em-
ploys a community-awareness network compressing scheme
to obtain a series of smaller networks from an input network,
and conducts a NRL method to learn node embeddings for
each compressed network. Finally, the node embeddings of



the original network can be obtained by concatenate all node
embeddings of compressed networks. Empirical studies on link
prediction on various real-world networks demonstrate HSRL
significantly outperforms the state-of-the-art algorithms.

Our future work includes combining HSRL with deep
learning-based methods, such as DNGR [25], SDNE [26], and
GCN [27]. It is also very interesting to extend HSRL to learn
node embeddings of more complex networks which may be
more common in real-world applications, e.g., heterogeneous
networks, attributed networks, and dynamic networks.
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APPENDIX

In this appendix, we present a case study of searching
relevant authors for ”Qiang Yang” to illustrate the performance
of HSRL.

A. A Case Study: Relevant Authors Search for ”Qiang Yang”

”Qiang Yang” is an active and influential researcher on
machine learning and data mining. We conduct a case study
of finding relevant researchers to him on the DBLP network.
Table.A shows the results of his top-25 relevant researchers
given by HSRL(DW), HARP(DW), and DeepWalk, respec-
tively.

TABLE A1
TOP-25 RELEVANT AUTHORS TO ”QIANG YANG”

Rank HSRL(DW) HARP(DW) DeepWalk

1 Dou Shen Dou Shen Dou Shen
2 Gui-Rong Xue Jian-Tao Sun Zheng Chen
3 Wenyuan Dai Zheng Chen Jian-Tao Sun
4 Zheng Chen Pu Wang Hua-Jun Zeng
5 Weizhu Chen Min Qin Gui-Rong Xue
6 Jian-Tao Sun Bin Cao Weizhu Chen
7 Hua-Jun Zeng Lin Deng Wenyuan Dai
8 Benyu Zhang Benyu Zhang Benyu Zhang
9 Hua Li Weizhu Chen Jeffrey Junfeng Pan

10 Jun Yan Lujun Fang Sinno Jialin Pan
11 Bin Cao Jeffrey Junfeng Pan Bin Cao
12 Xiao Ling Jun Yan Yong Yu
13 Dikan Xing Jilin Chen Chun-Yi Shi
14 Wei-Ying Ma Zhong Zhang Min Qin
15 QianSheng Cheng Hua-Jun Zeng Gongyi Wu
16 Ning Liu Wenyuan Dai Hua Li
17 Min Qin Raymond Chan Jie Yin
18 Yong Yu Dikan Xing Xiao Ling
19 Jun Zhu Dong Zhuang Lujun Fang
20 Junhui Zhao Tielin Chen Dikan Xing
21 Peng Bai Jie Yin Jun Yan
22 Hang Li Chenyong Hu Wei-Ying Ma
23 Ji-Rong Wen Gui-Rong Xue Dong Zhuang
24 Jinwen Ma Xiao Ling Wensi Xi
25 HongJiang Zhang Yiqiang Chen Evan Wei Xiang

From the results, we have the following observations:
• The top-14 relevant researchers of ”Qiang Yang” obtained

by HSRL(DW) are also the researchers in the top-25
lists of both HARP(DW) and DeepWalk with slightly
different orders. We can easily find out that most of these
relevant researchers are Ph.D students of ”Qiang Yang”.
They have strong collaboration with ”Qiang Yang” in
many works and directly related with him in the DBLP
network. HSRL(DW), HARP(DW), and DeepWalk all
perform well on finding the directly relevant researchers
of ”Qiang Yang”.

• The last 10 relevant researchers in the top-25 list
of HSRL(DW) are very different with respect to the
other two methods. The researchers in bold in the
Table.A1 are not in the top-25 relevant researchers. How-
ever, researchers including ”Hang Li”, ”Ji-Rong Wen”,
”HongJiang Zhang”, are active and influential on machine
learning or data mining. These researchers are similar

with ”Qiang Yang”. Contrary to HARP(DW) and Deep-
Walk which only work well on finding directly related re-
searchers of ”Qiang Yang”, HSRL(DW) is able to find his
relevant researchers who perform similar contributions to
the same research communities.


