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Abstract—According to recent studies, discrete fuzzy numbers
based on linguistic computing models gained great interest from
researchers and practitioners due to their properties. However,
the linguistic computing model’s research regarding the group
consensus is not enough and needs to be explored further. Besides,
group consensus is substantial in making the optimized decision
making. In this paper, we propose a novel consensus model based
on discrete fuzzy numbers in a linguistic computing model that
overcomes some of the main disadvantages of the previously
proposed methods from the literature. In this work, we assim-
ilated a new aggregation function and made a semi-automated
algorithm that allows the experts to interact and modify their
opinions during the simulation. This method achieves a greater
rate of convergence and also a higher consensus degree in Group
Decision-making problems.

Index Terms—Consensus, Discrete Fuzzy Numbers, Aggrega-
tion Function, Linguistic Computing Models, Group Decision
Making

I. INTRODUCTION

The concept ”consensus” is considered as a very essential
term which means ”settlement formed by the consent of
several or all member of the group”. The consensus covers
fields such as judgment aggregation, social choice, and group
decision making [1], [2]. Furthermore, in order to make an
agreement, we used the method of consensus. This includes
the advancement of the witnesses of members of the group to a
“consensus” regarding their preliminary judgments. This pro-
cess can be assisted by a distinct individual, who is identified
as a moderator. Therefore, assumed the significance of gaining
an acknowledged resolution by all individuals in the group,
the consensus has achieved a prodigious consideration and it
is fundamentally the main objective of group decision-making
problems. Thus, there is a need for a whole consensus reaching
process to achieve the final decision. For instance, the experts
of a specific field try to reach a common solution or consensus,
but each expert has his own preferences. The challenge here
is, how they can reach a high level of agreement among them
and take the final decision? The answer is: there is a need
for a consensus reaching model that takes the preferences of
the experts, treating them, measure and boost the consensus
level between experts to achieve a satisfactory solution or
consensus. Hence, many consensus models were proposed in
the literature [3], [11], [12].

The most comprehensive methods among the best to achieve
a consensus is centered on the expert’s preferences, typically,
over the supposed preference-relations. Owing to the prob-
lem’s complexity, these preference-relations can be presented
in different methods, numerous times inserted in a fuzzy
environment [3]–[9].

Then, it was pertinent to inform that the discrete fuzzy
numbers based model presents a few advantages as compared
to other existing methods. Predominantly, in the discrete fuzzy
numbers based linguistic computational modeling [16], the
experts can assess the substitutions using distinct linguistic
scales having better flexibility. In the linguistic models, the
decision-makers should provide a single linguistic term from
the set as an evaluation criterion. However, a single linguistic
term is not expressed by the experts in most of the above
studies. In order to address the complex problems, they used
expressions such as “Good”, “between fair” and “fair”.

In order to develop the consensus ways for the group
decision making (GDM) problems, the discrete fuzzy numbers
based linguistic model was proposed in [10] and [18].

In [10] proposed a consensus model based on linguistic
computing model which is able to attain consensus by main-
taining the information and with no imposition of any drastic
change. Along with, in [18], the authors propose a novel
method to measure the consensus degree and an automatic al-
gorithm to improve the consensus. The authors expose several
advantages of their method with respect to the one proposed
in [18] such as lower operating costs, better accuracy, better
effectiveness, and rationality. In addition, among the novel
features introduced in this paper, the use of weights on the
initial preferences of the experts for aggregation purposes, the
idea of discrete fuzzy number’s uncertainty, and the automatic
variations of the opinions to reach the consensus goal stand
out.

Nevertheless, the Two methods that were presented in [10],
[18], on some occasions, do not converge and therefore, a
consensus is not reached. [18] has a major drawback with
respect to the automation of the improvement of the consensus
degree. Namely, the experts only take part at the beginning
of the process, their opinions are changed without their ap-
proval and therefore, their individual final assessment may be
different from their actual opinion. Experts must be allowed



to take part during the whole process because, throughout
the discussion, other experts can defend their positions and
convince other experts to modify their opinions to other ones
closer to those defended by themselves. Otherwise, it is not a
true consensus process but an exploitation model to obtain an
automatic final decision representative of the initial opinions.
Finally, the method of improving group consensus in this paper
do not work with all conditions within a decision making
problems perhaps with specific conditions.

The main goals of this paper are to propose a novel consen-
sus method based on discrete fuzzy numbers which combine
the strong points of the two methods proposed in [10], [18]
but also solves the main drawbacks such as the low rate of
convergence, the high average number of required iterations
and the fact that the experts do not play any role in the
consensus process and their initial opinions are automatically
changed without their validation.

The contributions of this work are as follow:
1) Propose an aggregation function on the set of discrete

fuzzy numbers in line with [14], [15], [19]
2) Propose a new method to improve the consensus degree

where it allows the experts to modify their opinions but
that ensures the improvement of the consensus degree.

3) Constantly convergence and reach the highest consensus
level

The rest of the paper is organized as follows, the second
part devotes to the preliminaries, the third section introduces
the proposed algorithm, Further an example will be presented
in application. Then, discussion and finally, the conclusion.

II. PRELIMINARIES

To understand better the paper, this section will be devoted
to the main theories and definitions that will be used later.

By a fuzzy set of R, we have a function A: R→ [0, 1]. For
each fuzzy subset of A. let Aα = {x ∈ R : A(x) ≥ α} for any
α ∈ [0, 1] be its α-level set (α-cuts). By Supp(A), we mean
the support of A, i.e. the set of {x ∈ R : A(x) > 0}. By A0,
we mean the closure of supp(A).

Definition 1 ( [13]). A fuzzy subset A of R with membership
mapping A : R → [0, 1] is called discrete fuzzy numbers if
its support is finite, i.e, there exist x1, x2, · · · , xn ∈ R with
x1 < x2 < · · · < xn. Such that Supp(A) = {x1, x2, · · · , xn},
and there are natural numbers s, t with 1 6 s 6 t 6 n such
that:

1. A (xi) = 1 for any natural number i with s 6 i 6 t
(core)

2. A (xi) 6 A (xj) for each natural number i,j with 1 6
i 6 j 6 s

3. A (xi) > A (xj) for each natural number i,j with t 6
i 6 j 6 n

Henceforth, we will refer to the set of discrete fuzzy num-
bers as DFN and the discrete fuzzy number as dfn. Similarly,
we will present by ALn

1 the set of discrete fuzzy numbers
whose support is a sub-interval of the finite chain Ln.

A,B ∈ ALn
1 are two DFN. As the supports of A and B

are sub-intervals of Ln thus are each one of its α-cuts. The
α-level cuts for A and B are Aα =

[
xα1 , x

α
p

]
, Bα =

[
yα1 , y

α
p

]
.

Definition 2. Let A ∈ ALn
1 be a discrete fuzzy number. We

will say that α ∈ (0, 1] is a relevant α-level if there exists a
x ∈ Supp(A) such that A(x) = α.

Now let us introduce a method to generate aggregation func-
tions on the set ALn

1 by using discrete aggregation functions
on Ln.

Theorem 3 ( [14], [15]). Consider a binary aggregation
function F on the finite chain Ln. The binary operation on
ALn

1 defined as follows

F : ALn
1 ×A

Ln
1 → Aln1

(A,B)→ F (A,B)

being F(A,B) the dfn whose α-cuts are the sets:

{z ∈ Ln|F (minAα,minBα) ≤ z ≤ F (maxAα,maxBα)}
(1)

for each α ∈ [0, 1] is an aggregation function on ALn
1 .

Here, we remind the concept of linguistic model based on
DFN whose support is an interval of the finite chain Ln =
{0, 1, · · · , n}.

Primary, we can think about a bijective mapping between
the finite chain Ln and the ordinal scale σ = {s0, · · · , sn} by
maintaining the original order. Secondly, each normal discrete
convex fuzzy subset defined on the ordinal scale σ can be
studied a a dfn in ALn

1 . For example, let the linguistic hedge
σ = {EB, V B,B,MB,F,MG,G, V G,EG}
where the letters indicate the terms: Extremely Bad, Very

Bad, Bad, More or less Bad, Fair, More or less Good, Good,
Very Good and Extremely Good in the finite chain L8 and
they are mentioned in an increment order:
EB < V B < B < MB < F < MG < G < V G < EG
An an Example, the dfn
A =

{
0.8
V B ,

0.9
B , 1

F ,
0.6
G

}
∈ Al81 or

A =
{

0.8
1 ,

0.9
2 ,

1
3 ,

0.6
4

}
∈ Al81 .

These fuzzy fuzzy subsets are a simple and flexible repre-
sentations of the linguistic labels see Fig 1. Also, the values
attached to the linguistic terms are named membership values.

Definition 4. Let Ln = {0, · · · , n} be a finite chain. We recall
a subjective evaluation to each dfn belonging to the partially
ordered set ALn

1 .

As per recent observations, a subjective evaluation can be
interpreted equivalently like a normal convex fuzzy subset
defined on the original scale σ. A subjective evaluations
with linguistic computational model was introduced in [16]
with some interesting features [16], [17]. Hence, as a first
introduced aspect : there is no need for any transformation or
aggregation of information while the linguistic interpretation
based on subjective evaluations. Each subjective evaluation
defined by an expert is interpreted as a dfn of the set of A1Ln.
Because of this, we can deal this information as per Theorem



Fig. 1. Graphical Representation of subjective evaluation A

3. It is possible to define different flexibilizations of a linguistic
expression through the following subjective evaluations [6] :

Between si and sj =
{
A ∈ ALn1 |core (A) = [si, sj ]

}
Worse than si =

{
A ∈ ALn1 |core (A) = [s0, si−1]

}
Better than si =

{
A ∈ ALn1 |core (A) = [si+1, sn]

}
for all 0 ≤ i, j ≤ n. Hence, DFN A ∈ ALn

1 with
core (A) = [si, sj ], and with a different support, is considered
as flexibilization of the subjective evaluation ”between si and
sj , same with the other expressions. This Model allows to
the experts to indicate their opinions in another format. In a
manner, the experts are able now to employ linguistic scales
with distinct granularity and to express a final decision that
enclose all the evaluations in a different linguistic scales

III. PROPOSED APPROACH

The proposed approach is summarized in 5 main steps, see
2. These steps will be explained in the subsections below.

Initially, we presume that there is a group-evaluated prob-
lem. which has n number of experts. Where A1, A2, · · · , An
are the evaluations in R and based on DFN. the subjective
weights of experts are ws =

{
w1
s , w

2
s , · · · , wns

}
.

A. Computing the Combination Weights

The first step of the algorithm is denoted to the computa-
tional of the combination weights w = {w1, w2, · · · , wn} in
the same way as in [18].

Definition 5. Let xk represents the membership values of A ∈
ALn

1 , m refers to the number of the linguistic terms and x is
the membership values of A. The standard deviation of the
membership values D(A) is defined by:

D(A) =

√∑m
k=1(xk −

∑m
k=1

xk

m )2

m
(2)

Definition 6. For dfn A ∈ ALn
1 where Ln = {0, 1, · · · , n},

the uncertainty level is computed as follow:

U(A) = α
a

n
+ (1− α)[1−D(A)] (3)

Where a is the length of the dfn A interval, α is a value between
0 and 1 and D (A) is the standard deviation of the membership
values defined in (2).

Definition 7. The combination weights of ws is computed as
follow:

wp = βwps + (1− β) 1− U(Ap)∑p
k=1(1− U(Ak))

(4)

where β is a value between 0 and 1 and U(A) is the
uncertainty level defined in (3) .

Example: We have a groups of 4 experts where their
evaluations:
A1 =

{
1
3 ,

1
4

}
A2 =

{
1
0 ,

1
1 ,

0.8
2

}
A3 =

{
0.1
0 ,

0.4
1 ,

1
2 ,

0.4
3 ,

0.3
4

}
A4 =

{
0.6
1 ,

1
2 ,

0.3
3

}
A1, A2, A3 and A4 ∈ AL4

1 also, α = 0.5, β = 0.6 and ws =
{0.3, 0.1, 0.5, 0.1} We compute the Deviation by applying

(2): D(A1) =

√∑2
k=1(xk−

∑2
k=1

xk
2 )2

2 =

√∑2
k=1(xk−1)

2 = 0,
Then as well we obtained D(A2) = 0.41 , D(A3) = 0.81 ,
D(A4) = 0.37

Later, we compute the Uncertainty by applying (3) :
U(A1) = α an + (1− α)[1−D(A1)]
= 0.5 1

4+(1−0.5)[1−0] = 0.625. Similarly, U(A2) = 0.795
, U(A3) = 0.595 , U(A4) = 0.648

Finally, we compute the combination weights using (4):
w1 = βw1

s + (1− β) 1−U(A1)∑4
k=1(1−U(Ak))

= 0.5× 0.3 + (1− 0.5) 1−0.625
1.337 = 0.2922

Similarly, w2 = 0.123, w3 = 0.421 and w4 = 0.165

B. Computing the Aggregation Function

The second step of the algorithm is to aggregate the discrete
fuzzy numbers with the combination weights.

Definition 8 ( [19]). Let w = (w1, w2, . . . , wm) with∑i=m
i=1 wi = 1 a vector of combinational weights. The so-

called discrete weighted arithmetic mean is given by

F : (Ln)
m → Ln

F (x1, . . . , xm) = dW (x1, . . . , xm)e = d
∑n
i=1 xiwie .

Considering the discrete aggregation function introduced
in Definition 8, by using Theorem 1, we can obtain an
aggregation function on the set ALn

1 . We will denote by Aag

this aggregation function.
Example: We have two discrete fuzzy numbers A1 ={
1
3 ,

1
4

}
and A2 =

{
1
0 ,

1
1 ,

0.8
2

}
. The combination weights are

w = {0.5, 0.5}. The α-levels of A1 and A2 are {1, 0.8}.
A1: 1-cuts = [3,4] and 0.8-cut=[3,4]
A2: 1-cuts = [0,1] and 0.8-cut=[0,2]
We compute the α-levels of Aag (agregation fuction) by

applying the definition 6 and 7.
Aag: 1-cuts = {z ∈ Ln/F (3, 0) ≤ z ≤ F (4, 1)} =
{z ∈ Ln/ d0.5× 3 + 0.5× 0e ≤ z ≤ d0.5× 4 + 0.5× 1e} =
[2, 3].



Aag: 0.8-cuts = {z ∈ Ln/F (3, 0) ≤ z ≤ F (4, 2)} =
{z ∈ Ln/ d0.5× 3 + 0.5× 0e ≤ z ≤ d0.5× 4 + 0.5× 2e} =
[2, 3].
⇒ Aag =

{
1
2 ,

1
3

}
C. Computing Group Consensus Index

To compute the index (score) of the Consensus in a group
we need to apply the definition 9 proposed in [18].

Definition 9. Let A1, A2, . . . , Am ∈ ALn
1 be the opinions of

m experts and w =
{
w1, w2, · · · , wt

}
with

∑i=m
i=1 wi = 1 be

a vector of combinational weights. Let Aag the result of the
aggregation of A1, A2, . . . , Am. The group consensus index is
computed by:

GC(A1, . . . , Am) =

m∑
l=1

wl(1−Dl,ag) (5)

where Dl,ag is the deviation between the opinions given by

Dl,ag = λ

[
1

n(r + 1)

r∑
i=0

|pl,i − pag,i|

]

+ (1− λ)

[
1

n(r + 1)

r∑
i=0

|nl,i − nag,i|

] (6)

where λ ∈ [0, 1], nl,i and nag,i are the lower and pl,i and pag,i
are the upper limits of the α-cuts of Al and Aag , respectively.
To compute this, we consider the union of the relevant α-levels
of A1, A2, . . . , Am.

D. Computing the Distance

To compute the distances between the DFN A1, A2, . . . , Am

and the aggregation functionAag , we apply the equation in
definition 10 [6].

Definition 10. Given any two discrete fuzzy numbers A and B
∈ A1ln, the distance between A and B is computed by applying
the equation below:

d(A,B) =
1

2k(n+ 1)

k∑
i=1

αi(|aαi
1 − b

αi
1 |+ |a

αi
2 − b

αi
2 |) (7)

Where [aαi
1 , a

αi
2 ] and [bαi

1 , b
αi
2 ] are the α-cuts of A and B

(intervals) 0 ≤ alphai ≤ 1 with 1 ≤ i ≤k (k: different levels)

E. Improving Group Consensus

In order to improve the Group Consensus, we proposed
an algorithm which the experts can intervene to modify their
preferences. The steps of algorithm are summarized as follow:

- Select the highest computed distance that corresponds to
one expert preference.

- Random Process: Summarized as follow:
1. Generate N random DFN where for each one random

DFN, we will update our DFN input values from the GDM
problem based on the previous condition

2. Repeat the process from step 3 till reaching the consensus
3. Store all the converged random DFN

- Propose to the selected expert S number of preferences
(from the stored one) and ask the expert to choose between
which one that correspond near to his own opinion.

- Repeat the previous step till the expert find the preferences
near to his own opinions

F. Application

In the application, we present the example as of the Xiao
paper [18].

We take group of 4 experts as input of an input which are
given below:

Example: We have a groups of 4 experts where their
evaluations:
A1 =

{
0.6
2 ,

1
3 ,

0.7
4

}
A2 =

{
0.6
3 ,

1
4 ,

0.8
5 ,

0.7
6

}
A3 =

{
0.4
5 ,

1
6 ,

0.9
7

}
A4 =

{
0.6
5 ,

1
6 ,

0.8
7 ,

0.7
8

}
Furthermore, the other necessary inputs are as follow:
α = 0.5 β = 0.6 ws = {0.3, 0.1, 0.5, 0.1}
r = 10;λ = 0.5;n = 8; θ = 0.9
where, ws are the subjective weights.
Now, initial inputs are setup. We shall present each step

implemented with the results.
Step 1 Combination Weights
According to the definition 3 and Equ. (2), we calculated

the standard deviation for all the experts A1...A4. The results
are as follow.

D (A1) = 0.17, D (A2) = 0.15, D (A3) = 0.26, D (A4) =
0.15

Then, According to the definition 4 and Equ. (3), we
calculated the uncertainty for all the experts A1...A4. The
results are as follow.

U (A1) = 0.54, U (A2) = 0.61, U (A3) = 0.49, U (A4) =
0.61

In order to compute the combination weights, we used the
Equ. (4) as per definition 5. The combination weights results
are: W1 = 0.286, W2 = 0.149, W3 = 0.416, W4 = 0.149

Step 2 Aggregation Results
In this step, first we computed the α − levels as per

definition 6.
α−levels = 1, 0.9, 0.8, 0.7, 0.6, 0.4 Then, we calculated the

α − cuts according to definition 6. The results are presented
below.
A1: 1-cuts = [3,3], 0.9-cut=[3,3], 0.8-cuts = [3,3], 0.7-cuts

= [3,4], 0.6-cut=[2,4] and 0.4-cut=[2,4].
A2: 1-cuts = [4,4], 0.9-cut=[4,4], 0.8-cuts = [4,5], 0.7-cuts

= [4,6], 0.6-cut=[3,6] and 0.4-cut=[3,6].
A3: 1-cuts = [6,6], 0.9-cut=[6,7], 0.8-cuts = [6,7], 0.7-cuts

= [6,7], 0.6-cut=[6,7] and 0.4-cut=[5,7].
A4: 1-cuts = [6,6], 0.9-cut=[6,6], 0.8-cuts = [6,7], 0.7-cuts

= [6,8], 0.6-cut=[5,8] and 0.4-cut=[5,8].
Finally, after calculating the α − level and α − cut. We

applied the weights and aggregated results are as follow:
⇒ Aag =

{
0.6
4 ,

1
5 ,

0.9
6 ,

0.7
7

}
Step 3 : Group Consensus Index



Fig. 2. Proposed Approach

In order to calculate the group consensus index, we have
to calculate the deviation among each fuzzy discrete number
(A1, ..., A4) and aggregated result (Aag) according to Equ. (6)
in definition 8. The results of the deviation as follow:
D1,ag = 0.31, D2,ag = 0.13, D3,ag = 0.09, D4,ag = 0.12
Then, we used the Equ. (5) to calculate the group consensus

index and result of is given below.
GCI = 0.8372
where, GCI is the group consensus index.
since, the GCI is less than θ = 0.9. which means it is not

converged. Therefore, we need to compute the distance. If the

GCI is converged, then, we do not need to apply further.
Step 4 : Computing Distance
According to the Equ. (7) and definition 10. We calculated

the distance among each fuzzy discrete number (A1, ..., A4)
and aggregated result (Aag) d(Aag, A1)= 0.47, d(Aag, A2)=
0.22, d(Aag, A3)= 0.15, d(Aag, A4)= 0.18

Step 5 : Improving Group Consensus Index
Now, we have to select the expert with the highest distance

which is d(Aag, A1)= 0.47. Then, as per our algorithm, experts
is invoked to alter preferences. In order to facilitate the expert,
our proposed algorithm generated 50 random experts and



kept replacing the highest distance expert with one of the
fifty random experts while holding the rest 3 experts the
same. Every time, combination weights, aggregation results,
and group consensus are calculated. Our proposed algorithm
presented random experts who are greater or equal to the
previous consensus result. Then, the highest distance expert
got offered to exchange the preferences. Once the offer is
selected by expert.

We found the updated experts, which is given below:
A1 =

{
0.1
2 ,

1
3 ,

0.6
4 ,

0.2
5 ,

0.3
6

}
A2 =

{
0.6
3 ,

1
4 ,

0.8
5 ,

0.7
6

}
A3 =

{
0.4
5 ,

1
6 ,

0.9
7

}
A4 =

{
0.6
5 ,

1
6 ,

0.8
7 ,

0.7
8

}
We observed that the expert A1 is replaced. Furthermore, we

went to step 3. In addition, we found that the updated group
consensus index GCI = 0.8464 in first iteration. However, as
it is not converged, then the algorithm remains processing till
it converged.

In our case, the group consensus was converged in 2
iterations. The group consensus index in the 2 iterations with
the initial group consensus are as follow:

Initial GCI = 0.8372, First Iteration GCI = 0.8464
Second Iteration GCI = 0.916

DISCUSSION

In this paper, we have developed an algorithm which has a
strong ability to develop the group consensus. Our proposed
algorithm can converge efficiently as compared to the existing
literature such as [18]. In order to validate our proposed
algorithm, we applied the same example which is being
studied in the [18]. Our algorithm performed efficiently and
converged the group consensus index quickly with only two
iterations. However, If we observe the results in [18], the group
consensus index is converged at tenth iterations. This shows
the effectiveness of our proposed algorithm.

In order to further validate our algorithm. We generated
the 1000 groups of 4 discrete random numbers with n = 4,
n = 6 and n = 8. We applied our proposed algorithm and
algorithm in [18] on these 1000 groups with n = 4, n = 6 and
n = 8 to compare the convergence rate and average iteration.
Table I presents the simulation results which shows that our
proposed algorithm outperforms the algorithm presented in the
[18]. With n = 4, it is observed that Xiao algorithm [18]
has 35.4% convergence rate whereas our proposed algorithm
is 98.7% efficient. Moreover, we noticed that our proposed
algorithm and algorithm in [18] have more or less similar
computation time. Furthermore, we can see that our algorithm
is presenting outstanding results even with the n = 6 and
n = 8. The proposed algorithm has the capacity to deal with
conflicts and develop resolutions among the group members
in order to do effective group decisions.

CONCLUSION

As we know that group consensus plays an essential role
in making effective decision making. we explore the linguistic

computing model in order to study the group consensus appli-
cation. In this paper, we proposed the innovative consensus
model which is based on the discrete fuzzy numbers in a
linguistic computing model. In addition, we developed a new
aggregation function to aggregate the discrete fuzzy experts.
Moreover, we also presented the semi-automated algorithm
which is proved interactive for the experts and give the ability
to the expert to modify opinion on the run time. According
to the results, our proposed algorithm outperformed all the
existing methods in the literature with the group consensus
convergence rate 98.7% at n = 4, 99.9% at n = 6, and 100%
at n = 8. This proposed algorithm is useful for solving the
decision making problems in every walk of life.
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